DONiT}

UL

DERESTIMAT

T push --force

Noaa Barki

PROBLEM

Speed (v. Control

How to coordinate and ensure alignment among developers
without implementing excessive (heavyweight) control?

/\ Datree enable modern software development
\ { without compromising on operational efficiency

How Datree works

1 SCAN

|dentify issues in your code
repositories

y) SET

Set policy rules to prevent
future occurrences

3 ENFORCE

Automatically ruh policy
checks on pull requests

Enforce Best Practices Example - Docker rules pack:

throughout your Tech Stack

&

8 @ oo
DOCKER

KUBERNETES

SERVERLESS

Cl/CD

JENKINS ‘ \ m‘m‘m. e fom datre-dockerfogio
GIT FLOWS

ANY CUSTOM POLICY...

\/(\ datree.io

How Datree works

1 SCAN

|dentify issues in your code
repositories

y) SET

Set policy rules to prevent
future occurrences

3 ENFORCE

Automatically ruh policy
checks on pull requests

ﬁ) datreeio

Smart Policy Management

-

Seperate secret credentials from source code

Seperate secret credentials from
| v source code
This from being included in the repository by excludi

A 24 M 1

Separate personal config files from source
code and other stuff

A 9¢

Seperate secret credentials from source code Displaying 10/40 repasitories rivate blic: Enabled Only

& vooan | [
A 87 & LR

Ensure a .gitignore file is included in projects 7 (@ arbelifigma-plugins
S N 97
arbel/figma-plugins

Ensure CODEOWNERS defined in projects

& vocken || @ wuserneres

| (@ arbelifigma-plugins

| (@ arbelffigma-plugins

Separate dependencies from source code

P Enable on new repositories by default
A2

How Datree works

1 » SCAN o _—
- . Review required

Identify issues in your code — s
repositories

Some checks w

1failingand 1 s

y) SET

Set policy rules to prevent
future occurrences . Datree insights Successful in 6s — datreeio insigh

. Datree Smart Policy Failing after 5s

3 ENFORCE

AUtomatica”y run pO“Cy As an administrator, you may still me
checks on pull requests

Merge pull request = ~

Agenda

1. The git push command - How it works
2. The --force flag - Why and when to use and
3. The --force flag - Why it got bad reputation

4. Alternatives for safer push --force

©. How to recover for destructive use of push --force

S rebase

S push

S push --force /

Git Push
10

share
YOUr work
With the werld

git push

"a,ba/az‘eg’ remote refg’ u.('/‘ug local ref(‘,
while cending objectc nececsary to

complete the given refe.”

Git Documentation

= HEAD

(master) branch (master) branch (feature) branch

‘ : “First commit®
git clone <URL> .
: git commit
‘Second commit” > “‘Second commit”
. / git checkout -b feature K

git checkout master
. git commit
: /V Y
< . \‘)‘ @ “Third commit”
git push : git merge feature

Remote | Local

git push

(master) branch (master) branch

Commit:d023360 : Commit:d023360

Remote Local

git commit --amend

(master) branch (master) branch

git push - force

02c26f

Commit:b828r6g Commit:b828r6g

Remote Local

--force MATCHES the remote
branch with the local

git push --force

(master) branch (master) branch

Commit:b828r6g

Commit:b828r6g

o000 00

Remote Local

fast forward

shift the branch HEAD

(feature) branch
(master) branch ‘ ‘

(master) branch ‘ ' z @

)
)

commit --amend

(master) branch

(master) branch

C)-

HEAD

(feature) branch

Remote

git push -force

git rebase feature

Local

fce-with-lease

-force-with-lease

——force-with-lease

-—force-with-lease=<refname>

Example: --force-with-lease=master:#tag master

refname expected

S rebase

S push
S push --force

S push --force-with-lease X

So --force-with-lease it

But be WISE

@ someone pulled a recent version of the
master just before?

ds push --force the recent version

@ You were the last to push to master?

¢ Do not clear your terminal
@ Confess
: Ensure no one mess with repo

§ git push origin master --force

+|42884b4.l.a4ee42d master -» master (forced update)

ds push --force origin 42884b4:master

@ | occidentally --force my repo, and |
want to go back to the previous version.

What do | do?

B git reflLog

oit refLog

1. (HEAD -> test-branch) HEAD@{0O}: rebase -i (finish): returning to
refs/heads/test-branch
2. (HEAD -> test-branch) HEAD(@{1l}: rebase -i (squash): a
3. HEAD@{2}: rebase -i (squash): # This is a combination of 2 commits.
4. HEADQ@{3}: rebase -i (sgart): checkout refs/heads/masterl
ILE. NEADCIAT: commit: C
. NEADG D). commit:
7. HEAD@{6}: commit: a
8. (origin/master, origin/HEAD, master) HEAD@{7}: checkout: moving from master to

test-branch
9. (origin/master, origin/HEAD, master) HEAD(@{8}: pull: Fast-forward

@ reset --hard HEAD@{4}
@ push --force origin test-branch

f General recover

1. Get the previous commit via terminal, refLog...

2. Create branch or reset to the previous commit

3. Push --force origin master

@ Reset --hard origin/<new-branch-name>

é You saved the day!

7 Restore after intentionall
push --force

Let's say...
&y You own a Git server repository server
)Y You had a developer that wrote a project for you
/
£ For some reason the developer got really angry
/
) The developer deleted all repos, and --force ed “Ha Ha The project was here”

7% The developer escaped from the country

@ Leaving you without any code and you have never cloned the repo before

‘ Restore after intentionally push
--force

Sadly git log won't work for us

é Look for unreachable commits - Dangling Commits!

‘ Run git fsck --lost-found
‘ Check it out by run git show <commit>

‘ Finish with following ‘General Recover’

CALM

MARK PROTECTED BRANCHES

It can happen to anyone

&
.
ask Jenkins

Jo sum up...

1. How the push command works

2. When to use push --force

3. Why --force consider dangerous
4. Safer alternatives for push --force

9. How to recover from destructive use of push --force

Thank you!

BarkiNoaa I noaa@datree.io O noaabarki

