
push --force

Noaa Barki

BarkiNoaa

How to coordinate and ensure alignment among developers
without implementing excessive (heavyweight) control?

PROBLEM

Speed vs. Control

Datree enable modern software development
without compromising on operational efficiency

4

Identify issues in your code
repositories

SCAN1

Set policy rules to prevent
future occurrences

SET2

Automatically run policy
checks on pull requests

ENFORCE3

How Datree works

5

Identify issues in your code
repositories

SCAN1

Set policy rules to prevent
future occurrences

SET2

Automatically run policy
checks on pull requests

ENFORCE3

How Datree works

6

Identify issues in your code
repositories

SCAN1

Set policy rules to prevent
future occurrences

SET2

Automatically run policy
checks on pull requests

ENFORCE3

How Datree works

1. The git push command - How it works

2. The --force flag - Why and when to use and

3. The --force flag - Why it got bad reputation

4. Alternatives for safer push --force

5. How to recover for destructive use of push --force

Agenda

✓$ push

$ rebase ✓

��$ push

$ push --force ✓

Git Push
To
Share
Your work
With the world

"updates remote refs using local refs,
while sending objects necessary to

complete the given refs."

git push

Git Documentation

git commit

Remote

“First commit”

“Second commit”
git checkout -b feature

“Second commit”

“Third commit”

 git commit

git merge feature

git checkout master

= HEAD

(master) branch

(feature) branch(master) branch

git push

git clone <URL>

Local

Remote

(master) branch

(master) branch

Local

git push
Commit:1564b4fCommit:1564b4f

Commit:d023360

Commit:d023360

Remote

(master) branch

(master) branch

Local

git commit --amend
Commit:1564b4fCommit:1564b4f

Commit:d02c26f

Commit:b828r6g

Commit:d02c26f

git push - force

Commit:b828r6g

Commit:d02c26f Commit:d02c26f

Commit:b46bfc6Commit:b46bfc6

--force MATCHES the remote
branch with the local

So --force it

But be wise

Remote

(master) branch

(master) branch

Local

git push --force
Commit:1564b4fCommit:1564b4f

Commit:b828r6g

Commit:b828r6g

(feature) branch

(master) branch

fast forward

git push

 (master) branch

shift the branch HEAD

 (master) branch

commit --amend

 (master) branch

git amend

Remote

git rebase feature

= HEAD

(master) branch

(feature) branch(master) branch

git push -force

Local

But still,B force it

--force-with-lease

-force-with-lease

--force-with-lease=<refname>

Example: --force-with-lease=master:#tag master
refname expected

--force-with-lease

$ rebase ✓

$ push --force-with-lease 𐄂
𐄂$ push

$ push --force
😭

��

So --force-with-lease it

But be wise

👍🏻 push --force the recent version

🧐 someone pulled a recent version of the
master just before?

😱 You were the last to push to master?

☝🏻 Do not clear your terminal
🥺 Confess
🗣 Ensure no one mess with repo

👍🏻 push --force origin 42884b4:master

😩 I accidentally --force my repo, and I
want to go back to the previous version.
What do I do?

📄 git refLog

git refLog

👊🏻 push --force origin test-branch

1. 1b46bfc65e (HEAD -> test-branch) HEAD@{0}: rebase -i (finish): returning to
refs/heads/test-branch

2. b46bfc65e (HEAD -> test-branch) HEAD@{1}: rebase -i (squash): a
3. dd7906a87 HEAD@{2}: rebase -i (squash): # This is a combination of 2 commits.
4. a3030290a HEAD@{3}: rebase -i (start): checkout refs/heads/master
5. 0c2d866ab HEAD@{4}: commit: c
6. 6cab968c7 HEAD@{5}: commit: b
7. a3030290a HEAD@{6}: commit: a
8. c9c495792 (origin/master, origin/HEAD, master) HEAD@{7}: checkout: moving from master to

test-branch
9. c9c495792 (origin/master, origin/HEAD, master) HEAD@{8}: pull: Fast-forward

☝🏻 reset --hard HEAD@{4}

General recover
1. Get the previous commit via terminal, refLog…

2. Create branch or reset to the previous commit

3. Push --force origin master

4. ☝🏻 Reset --hard origin/<new-branch-name>

🥳 You saved the day!

Restore after intentionally
push --force

😎 You own a Git server repository server

● 🤓 You had a developer that wrote a project for you

● 😡 For some reason the developer got really angry

● 😈 The developer deleted all repos, and --force ed “Ha Ha The project was here”

● 🏃 The developer escaped from the country

● 😭 Leaving you without any code and you have never cloned the repo before

Let’s say...

💪🏻 Restore after intentionally push
--force

𐄂 Sadly git log won’t work for us

🧐 Look for unreachable commits - Dangling Commits!

○ 👉🏻 Run git fsck --lost-found

○ 👉🏻 Check it out by run git show <commit>

○ 🤟🏻 Finish with following ‘General Recover’

MARK PROTECTED BRANCHES

It can happen to anyone

ask Jenkins

To sum up...
1. How the push command works

2. When to use push --force

3. Why --force consider dangerous

4. Safer alternatives for push --force

5. How to recover from destructive use of push --force

BarkiNoaa

Thank you!
noaa@datree.io noaabarki

